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Voluntary exercise has been associated with reduced anxiety across several animal models. Manipulation
of central 5-HT can alter anxiety-like behaviors and administration of the 5-HT agonist metachlorophe-
nylpiperazine (mCPP) increases anxiety in rodents and humans. To examine whether the anxiolytic effect
of exercise is associated with an alteration in 5-HT systems, we examined the anxiogenic effect of mCPP
in exercising and nonexercising mice. C57BL/6J mice were given 2 weeks of free access to either a
functioning or nonfunctioning running wheel. Mice were then tested for acoustic startle following
systemic injection of either 0, 0.1, 0.3, or 1 mg/kg of mCPP. Consistent with its anxiogenic properties,
mCPP produced a dose-dependent increase in acoustic startle in nonexercising mice. However, this
anxiogenic effect was blunted in exercising mice. These findings suggest that exercise may help to reduce
anxiety by altering 5-HT systems, perhaps by down-regulating postsynaptic 5HT 2B/2C receptors.
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It is well known that physical activity (i.e., exercise) benefits the
cardiovascular system and thereby improves physical health. There
is now a growing evidence that exercise also benefits the brain
(Cotman & Berchtold, 2002; Cotman & Engesser-Cesar, 2002)
and improves cognitive and emotional health (Dishman et al.,
2006; Friedland et al., 2001; Hillman, Belopolsky, Snook, Kramer,
& McAuley, 2004; Laurin, Verreault, Lindsay, MacPherson, &
Rockwood, 2001; Manger & Motta, 2005). In humans, physical
exercise is associated with a lower risk of cognitive impairment,
dementia and Alzheimer’s disease (Friedland et al., 2001; Laurin
et al., 2001) and has been associated with improvements in atten-
tion (Hillman et al., 2004). Consistent with these effects, voluntary
exercise in rodents improves learning and memory across several
tasks and can mitigate cognitive decline in senescent mice (Ba-
ruch, Swain, & Helmstetter, 2004; Christie et al., 2005; Fordyce &
Farrar, 1991; Fordyce, Starnes, & Farrar, 1991; Fordyce & Weh-
ner, 1993; Radak et al., 2001; Samorajski et al., 1985; van Praag,
Christie, Sejnowski, & Gage, 1999a; van Praag, Chunm, & Gage,
2005; van Praag, Kempermann, & Gage, 1999b, 2000). Although
the exact mechanisms by which exercise benefits the brain are
unclear (Cotman & Berchtold, 2002; Dishman et al., 2006), vol-
untary exercise in rodents is associated with neurogenesis, in-
creased neuronal survival (Brown et al., 2003; Farmer et al., 2004;
van Praag et al., 1999a, 2005; van Praag et al., 1999b, 2000),
capillary growth and increased vascular flow (Black, Isaacs,
Anderson, Alcantara, & Greenough, 1990; Isaacs, Anderson, Al-
cantara, Black, & Greenough, 1992; Swain et al., 2003), increased
expression of neurotrophins (Gomez-Pinilla, Ying, Roy, Molteni,
& Edgerton, 2002; Neeper, Gomez-Pinilla, Choi, & Cotman, 1995,

1996; Vaynman, Ying, & Gomez-Pinilla, 2004a, 2004b), changes
in gene expression (Tong, Shen, Perreau, Balazs, & Cotman, 2001)
and signaling molecules (Shen, Tong, Balazs, & Cotman, 2001),
and changes in serotonin (Greenwood, Foley, Burhans, Maier, &
Fleshner, 2005; Greenwood et al., 2003a), norepinephrine and
Gamma-aminobutyric acid (GABA) (Dunn, Reigle, Youngstedt,
Armstrong, & Dishman, 1996; Overton et al., 1991).

Physical exercise also affects emotional health. In humans,
exercise has been associated with improvement in treatment out-
comes for both depression and anxiety (Dunn, Trivedi, & O’Neal,
2001; Fox, 1999; Morgan & Goldstein, 1987; Salmon, 2001;
Scully, Kremer, Meade, Graham, & Dudgeon, 1998) and may be
particularly effective in managing posttraumatic stress disorder
(PTSD) (Manger & Motta, 2005). Voluntary exercise in rodents
has been shown to improve immunological and behavioral re-
sponses following stress (Dishman, 1997; Dunn et al., 1996; Flesh-
ner, 2000, 2005; Kennedy, Smith, & Fleshner, 2005; Moraska &
Fleshner, 2001; Soares et al., 1999) and to produce a reduction in
anxiety as measured in the open field (Dishman et al., 1996),
elevated plus maze and the light-dark box (Binder, Droste, Ohl, &
Reul, 2004). Consistent with this, we have recently shown that
voluntary exercise in C57BL/6J mice produces a robust anxiolytic
effect as evidenced by a reduction in startle amplitude, increased
time spent in the center of an open field, decreased stress-induced
hyperthermia and increased social interaction (Detroy, Duffy,
Guignon, & Falls, 2005).

Any number of adaptive changes in the brain could contribute to
the anxiolytic effect of voluntary exercise (Dishman et al., 1996,
1997; Dunn et al., 1996; Soares et al., 1999). However, given the
important role of serotonin (5-HT) in anxiety [see (Handley, 1995)
for review] and in the etiology and treatment of anxiety disorders,
it is likely that changes in central 5-HT functioning play some role
in the anxiolytic effects of exercise (Greenwood et al., 2003b).

Metachlorophenylpiperazine (mCPP) is anxiogenic in humans
(Feuchtl et al., 2004; Gatch, 2003; Graeff, Garcia-Leal, Del-Ben,
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& Guimaraes, 2005) and rodents (Abrams et al., 2005; Bilkei-
Gorzo, Gyertyan, & Szabados, 1996; Cornelio & Nunes-de-Souza,
2007; Graeff, Guimaraes, De Andrade, & Deakin, 1996; Ris-
brough & Geyer, 2005) and has been associated with activation of
brain areas that are known to participate in the regulation of
anxiety-related behaviors (Singewald, Salchner, & Sharp, 2003;
Thompson & Rosen, 2006). Because exercise in rodents is anxi-
olytic and has been associated with alterations in central 5-HT
functioning (Greenwood et al., 2004), we tested whether exercise
in mice would be associated with a decrease in the anxiogenic
effect of mCPP. C57BL/6J mice were given 2 weeks of voluntary
access to a running wheel. Following this, mice were injected with
mCPP (0, 0.1, 0.3, and 1.0 mg/kg, ip) and tested for acoustic
startle. The acoustic startle response is a sensitive measure of
anxiety (Davis, Falls, Campeau, & Kim, 1993; Walker, Toufexis,
& Davis, 2003): drugs and environmental conditions known to
increase anxiety increase acoustic startle (Grillon, Pellowski,
Merikangas, & Davis, 1997; Lee & Davis, 1997b; Walker &
Davis, 1997) whereas drugs and environmental conditions known
to decrease anxiety decrease acoustic startle (Davis et al., 1993;
Koch, Schmid, & Schnitzler, 1996; Schweimer, Fendt, &
Schnitzler, 2005). If exercise is associated with an alteration in
5-HT systems, then mice given access to a running wheel will
show a blunted anxiogenic response to mCPP.

Method

Subjects

Male C57BL/6J mice (n � 59) were obtained from Jackson
Laboratories (Bar Harbor, Maine). Mice were housed in groups of
four and maintained on a 12-h light/dark cycle (lights on at 0700
hours). Food and water were available ad libitum. Cages of mice
were randomly assigned to exercise or nonexercising groups. Ex-
ercise groups were given free access to a functioning running
wheel while nonexercising groups had access to a locked, non-
functioning running wheel. Mice were housed for 2 weeks with the
running wheel before the beginning of experiments. We have
previously shown (Detroy et al., 2005) that the total distance run in
24 hours per cage is 18.05 km (�0.3 km, approximate average of
4.5 km per mouse). This is consistent with published reports
indicating that C57BL/6J given free access to a running wheel will
run approximately 4 to 5 km in a 24-h period (Droste et al., 2003;
Harri et al., 1999). Furthermore, a detailed video analysis of night
cycle running in a sample of four cages revealed that each indi-
vidual mouse runs on average 25% of the total time (range 17 and
38%). There are also no differences in body weight between
exercising and nonexercising mice (Droste et al., 2003; Harri et al.,
1999).

Drugs

mCPP HCl (Sigma-Aldrich, St. Louis, MO) was mixed fresh in
physiological saline for each injection day. Doses of 0, 0.1 mg/kg,
and 0.3 mg/kg and 1.0 mg/kg were administered intraperitoneal in
a volume of 10 ml/kg. Injections were given 15 minutes before the
test for acoustic startle (Risbrough & Geyer, 2005).

Apparatus

Acoustic startle was measured in eight individual sound atten-
uating cubicles measuring 58 (W) � 32 (D) � 55 (H) cm. Each

cubicle was lined with black, sound absorbing foam with no
internal source of light. Each cubicle contained a stabilimeter
device consisting of a load cell platform onto which the behavioral
chamber was mounted. The chamber was constructed of clear
acrylic, cylindrical in shape, 12.5 cm in length, with an inner
diameter of 5 cm (Med Associates, Georgia, VT). Startle responses
were transduced by the load cell, amplified, and digitized over a
range of 0 to 4,096 units. Startle stimuli were 20 ms bursts of white
noise (10 each at 95, 100, and 105 dB) provided through Radio
Shack Supertweeters, one located in each sound attenuating cubi-
cles 10 cm behind each behavioral chamber.

Data collection and the control and sequencing of all stimuli
were controlled by Med-Associates startle reflex hardware and
software (Georgia, VT). Startle amplitude was defined as the
largest peak to trough value within 100 ms after the onset of the
startle stimulus.

Procedure

The experiment was carried out with a within subjects design in
which each mouse within an exercising group was given each of
the four doses of mCPP (0, 0.1, 0.3, and 1 mg/kg). The order of
doses for each mouse was determined using a Latin Square design
such that on each test day an equal number of mice received each
dose.

Mice were transported to the lab from the colony in their home
cage. Mice were removed from their cage, weighed, and injected
with one of four doses of mCPP. Fifteen minutes later, mice were
placed in the startle apparatus. After a 5-min acclimation period
during which no stimuli were administered, the mice were given
the first of 30 noise burst startle stimuli (10 each at 95, 100, and
105 dB) presented in a pseudorandom order with the constraint
that each startle intensity occur once in each block of three stimuli.
The intertrial interval was 60 seconds. This procedure was re-
peated three additional times until each mouse had been given each
dose of mCPP. The interval between successive doses of mCPP
(i.e., between successive startle tests) was 48 hours.

Statistical Analysis

Mean startle amplitude was computed for each mouse at each
dose. The data were analyzed with a repeated measures analysis of
variance (ANOVA) with group (exercising or nonexercising) and
dose (0, 0.1, 0.3, 1.0 mg/kg) as independent factors and startle
amplitude as the dependent factor. Post hoc analyses with
Newman–Keuls paired t tests were used to test for differences
within groups across the doses of mCPP (Hays, 1988).

Results

As we have previously reported (Detroy et al., 2005), mice
given access to a running wheel (exercising group) exhibited lower
acoustic startle amplitude than mice given access to a locked (i.e.,
nonfunctioning) running wheel (nonexercising group) (Figure 1, 0
mg/kg mCPP). mCPP dose dependently facilitated acoustic startle
in nonexercising mice. However, this effect was blunted in exer-
cising mice. In fact, only the highest dose of mCPP facilitated
startle in exercising mice.
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ANOVA revealed significant main effects of group (exercising
vs. nonexercising, F(1, 57) � 33, p � .05) and mCPP dose (F(3,
171) � 30.9, p � .05) as well as a significant dose by group
interaction, F(3, 171) � 2.93, p � .05. The significant interaction
was followed up with lower order ANOVAs for each group. mCPP
produced a dose dependent facilitation in startle in nonexercising
mice F(3, 171) � 2.93, p � .05. Each dose of mCPP elevated
startle above the 0 mg/kg dose (Student-Newman–Keuls test, ps �
.05). In contrast, only the highest dose of mCPP significantly
facilitated startle (1.0 mg/kg) in exercising mice ( p � .05).

Discussion

Several clinical studies have suggested an anxiolytic effect of
regular exercise in humans (Dunn et al., 2001; Fox, 1999; Manger
& Motta, 2005; Morgan & Goldstein, 1987; Salmon, 2001; Scully
et al., 1998); however, in rodents the anxiolytic effects of exercise
has been somewhat more variable. In studies allowing animals
voluntary access to a running wheel there are reports of anxiolytic
effects (Binder et al., 2004; Dishman et al., 1996, 1997), no effects
(Pietropaolo, Feldon, Alleva, Ciruli, & Yee, 2006) or increases in
anxiety-like behavior following exercise (Burghardt, Fulk, Hand,
& Wilson, 2004). Although these inconsistencies may be because
of any number of experimental variables, including differences in
species (rat or mouse), sex, housing conditions (e.g., single vs.
grouped housed), duration of exercise and anxiety model, they
point to the need for continued assessment of the putative anxio-
lytic effects of exercise in animal models. In this study, we show
that 2 weeks of voluntary exercise reduced acoustic startle ampli-
tude and blunted the startle-enhancing effect of the anxiogenic
drug mCPP. Because anxiolytic treatments decrease acoustic star-
tle (Grillon et al., 1997; Lee & Davis, 1997b; Walker & Davis,
1997), whereas anxiogenic treatments increase acoustic startle
(Davis et al., 1993; Koch et al., 1996; Schweimer et al., 2005), we

interpret these data as being consistent with an anxiolytic effect of
voluntary exercise. The fact that 2 weeks of exercise was sufficient
to produce an anxiolytic effect is interesting in light of the fact that
studies typically allow rodents to run for up to 6 weeks. Unpub-
lished data from our lab suggests that 1 week, but not 3 days, of
exercise is sufficient to reduce startle amplitude and the reduction
in startle amplitude persists as long as the mice are allowed to run
(up to 12 weeks). Clearly much more work is needed examining
how the duration of exercise influences the reduction in anxiety
(see Berchtold, Chinn, Chou, Kesslak, & Cotman, 2005).

mCPP is a 5-HT agonist, and because voluntary exercise was
associated with a blunted effect of mCPP, this suggests voluntary
exercise exerts its anxiolytic effect in part through altering central
5-HT function (Greenwood et al., 2005, 2003a). In humans, exer-
cise has also been shown to blunt the effect of mCPP. Individuals
completing a 10-week exercise regimen and subsequently chal-
lenged with an oral dose of mCPP showed a decreased cortisol
response as compared to their response in a preexercise challenge
(Broocks et al., 2001). mCPP is thought to mediate its anxiogenic
effects through actions at the 5-HT2C receptor (Campbell & Mer-
chant, 2003; Curzon & Kennett, 1990; Gibson, Barnfield, & Cur-
zon, 1994; Kennett, Whitton, Shah, & Curzon, 1989; Kennett et
al., 1996; Wood, 2003). With this, and because the cortisol re-
sponse to mCPP is largely mediated by 5-HT2B/2C receptors
(Broocks et al., 2001), Broocks and colleagues hypothesize that
exercise leads to a down-regulation of central 5-HT2B/2C receptors.
Although mCPP has high affinity for 5-HT2C receptors, it also
binds to several other 5-HT receptor subtypes (Hoyer et al., 1994;
Porter et al., 1999). Therefore, based on the present data, and
without the benefit of highly selective antagonist studies examin-
ing the principal receptor subtypes responsible for augmenting
acoustic startle, it is currently unknown whether mCPP enhances
startle by actions at 5-HT2C receptors or another 5-HT receptor
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Figure 1. The 5-HT receptor agonist mCPP dose dependently increases acoustic startle amplitude in nonex-
ercising mice. Dashed line represents startle amplitude following vehicle injection (0 mg/kg). * Newman–Keuls
Pairwise Comparison versus 0 mg/kg, p � .05.
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subtype. Therefore, we can only speculate the anxiolytic effect of
exercise on acoustic startle is mediated by alterations in 5-HT2C

receptors.
Greenwood et al. (2003) have provided further evidence that

voluntary exercise alters central 5-HT function. In their experi-
ments, 6 weeks of voluntary exercise in rats was associated with an
up-regulation of mRNA for 5-HT1A somatodentritic autoreceptors
in the dorsal raphe nucleus (DRN) (Greenwood et al., 2003b). If
the up-regulation of mRNA for 5-HT1A somatodentritic autore-
ceptors results in an up-regulation of receptor protein, additional
5-HT1A autoreceptors would decrease DRN activity by enhancing
autoinhibition of DRN cell firing. This, in turn, should decrease
5-HT release in DRN projection areas that are known to play a role
in anxiety-related behaviors. Consistent with this, Dishman and
colleagues (Dishman et al., 1997) have reported that voluntary
exercise in rats was associated with decreased shock-induced ele-
vation in the 5-HT metabolite 5-hydroxyindole acetic acid in the
hippocampus and amygdala suggesting that exercise decreased
5-HT function in these DRN targets associated with anxiety-like
behavior. It is interesting to note that treadmill (i.e., forced) exer-
cise has been shown to increase 5-HT release in the hippocampus,
frontal cortex, and spinal cord (Bequet, Gomez-Merino, Berthelot,
& Guezennec, 2001, 2002; Gerin, Legrand, & Privat, 1994;
Gomez-Merino, Bequet, Berthelot, Chennaoui, & Guezennec,
2001; Meeusen et al., 1996). Treadmill running appears to be
qualitatively different from voluntary exercise and has been argued
to be more akin to stress (Dunn et al., 1996). In this light, it is
interesting that treadmill running may also produce qualitatively
different effect on the 5-HT system.

In addition to the documented exercise-induced changes in
presynaptic 5-HT function, it is possible that exercise additionally
affects postsynaptic 5-HT function. There is substantial evidence
implicating a role for the bed nucleus of the stria terminalis
(BNST) in anxiety-related behavior. For example, lesions of the
BNST reduce anxious responding to intracerebroventricular
corticotropin-releasing factor (CRF) (Lee & Davis, 1997a), bright
lights (Walker & Davis, 2002), uncontrollable shock (Hammack,
Richey, Watkins, & Maier, 2004), and exposure to predator odor
(Fendt, Endres, & Apfelbach, 2003). The BNST receives direct
projections from the DRN and systemic injection of mCPP in-
creases cFos expression in the BNST (Singewald et al., 2003).
Moreover, direct intra-BNST infusion of the 5-HT1-like/7 agonist
5-carboxytryptamine (5-CT) produces an anxiolytic-like effect on
acoustic startle (Levita et al., 2004). In an unpublished study we
have shown that direct infusion of low doses of mCPP into the
BNST increases acoustic startle in mice. Hence, we suggest that
the anxiolytic effect of voluntary exercise may be due in part to a
decrease in 5-HT mediated activity in the BNST.
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